废话不说,直接上定义:

1
[capture](params) -> ret {something;}

其中 capture 是捕获列表,params 是参数表,opt 是函数选项,ret 是返回值类型,something是函数体。

二话不讲,上个例子:

1
2
auto f = [](int a) -> int { return a + 1; };
std::cout << f(1) << std::endl; // 输出: 2

显然嘛,C++11嘛,类型推导比较简单,所以稍微简化一下:

1
2
auto f = [](int a){ return a + 1; };
std::cout << f(1) << std::endl; // 输出: 2

那要是没参数,写[](){return x;}不是怪怪的嘛,所以括号也省了吧

1
2
auto pi = []{ return 3.1415926535; };
std::cout << pi() << std::endl; // 输出: 3.1415926535

好,那啥事lambda捕获列表呢?

lambda 表达式可以通过捕获列表捕获一定范围内的变量:

  • [] 不捕获任何变量。
  • [&] 捕获外部作用域中所有变量,并作为引用在函数体中使用(按引用捕获)。
  • [=] 捕获外部作用域中所有变量,并作为副本在函数体中使用(按值捕获)。
  • [=,&foo] 按值捕获外部作用域中所有变量,并按引用捕获 foo 变量。
  • [bar] 按值捕获 bar 变量,同时不捕获其他变量。
  • [this] 捕获当前类中的 this 指针,让 lambda 表达式拥有和当前类成员函数同样的访问权限。如果已经使用了 & 或者 =,就默认添加此选项。捕获 this 的目的是可以在 lamda 中使用当前类的成员函数和成员变量。

好,上例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class A
{
public:
int i_ = 0;
void func(int x, int y)
{
auto x1 = []{ return i_; }; // error,没有捕获外部变量
auto x2 = [=]{ return i_ + x + y; }; // OK,捕获所有外部变量
auto x3 = [&]{ return i_ + x + y; }; // OK,捕获所有外部变量
auto x4 = [this]{ return i_; }; // OK,捕获this指针
auto x5 = [this]{ return i_ + x + y; }; // error,没有捕获x、y
auto x6 = [this, x, y]{ return i_ + x + y; }; // OK,捕获this指针、x、y
auto x7 = [this]{ return i_++; }; // OK,捕获this指针,并修改成员的值
}
};
int a = 0, b = 1;
auto f1 = []{ return a; }; // error,没有捕获外部变量
auto f2 = [&]{ return a++; }; // OK,捕获所有外部变量,并对a执行自加运算
auto f3 = [=]{ return a; }; // OK,捕获所有外部变量,并返回a
auto f4 = [=]{ return a++; }; // error,a是以复制方式捕获的,无法修改
auto f5 = [a]{ return a + b; }; // error,没有捕获变量b
auto f6 = [a, &b]{ return a + (b++); }; // OK,捕获a和b的引用,并对b做自加运算
auto f7 = [=, &b]{ return a + (b++); }; // OK,捕获所有外部变量和b的引用,并对b做自加运算

另外要记得捕获是瞬间完成的

1
2
3
4
int a = 0;
auto f = [=]{ return a; }; // 按值捕获外部变量
a += 1; // a被修改了
std::cout << f() << std::endl; // 输出0

那么如果希望去修改按值捕获的外部变量应当怎么办呢?这时,需要显式指明 lambda 表达式为 mutable:

1
2
3
int a = 0;
auto f1 = [=]{ return a++; }; // error,修改按值捕获的外部变量
auto f2 = [=]() mutable { return a++; }; // OK,mutable

需要注意的一点是,被 mutable 修饰的 lambda 表达式就算没有参数也要写明参数列表。

最后,介绍一下 lambda 表达式的类型。

lambda 表达式的类型在 C++11 中被称为“闭包类型(Closure Type)”。它是一个特殊的,匿名的非 nunion 的类类型。

因此,我们可以认为它是一个带有 operator() 的类,即仿函数。因此,我们可以使用 std::function 和 std::bind 来存储和操作 lambda 表达式:

1
2
std::function<int(int)>  f1 = [](int a){ return a; };
std::function<int(void)> f2 = std::bind([](int a){ return a; }, 123);

另外,对于没有捕获任何变量的 lambda 表达式,还可以被转换成一个普通的函数指针:

1
2
3
using func_t = int(*)(int);
func_t f = [](int a){ return a; };
f(123);

lambda 表达式可以说是就地定义仿函数闭包的“语法糖”。它的捕获列表捕获住的任何外部变量,最终均会变为闭包类型的成员变量。而一个使用了成员变量的类的 operator(),如果能直接被转换为普通的函数指针,那么 lambda 表达式本身的 this 指针就丢失掉了。而没有捕获任何外部变量的 lambda 表达式则不存在这个问题。

这里也可以很自然地解释为何按值捕获无法修改捕获的外部变量。因为按照 C++ 标准,lambda 表达式的 operator() 默认是 const 的。一个 const 成员函数是无法修改成员变量的值的。而 mutable 的作用,就在于取消 operator() 的 const。

需要注意的是,没有捕获变量的 lambda 表达式可以直接转换为函数指针,而捕获变量的 lambda 表达式则不能转换为函数指针。看看下面的代码:

1
2
3
typedef void(*Ptr)(int*);
Ptr p = [](int* p){delete p;}; // 正确,没有状态的lambda(没有捕获)的lambda表达式可以直接转换为函数指针
Ptr p1 = [&](int* p){delete p;}; // 错误,有状态的lambda不能直接转换为函数指针

上面第二行代码能编译通过,而第三行代码不能编译通过,因为第三行的代码捕获了变量,不能直接转换为函数指针。